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Introduction . From the parameterized description rrr(u, v) of a surface Σ in
3-space we construct matrices

G(u, v) =
(

rrru···rrru rrru···rrrv

rrru···rrrv rrrv···rrrv

)
≡

(
g11 g12

g12 g22

)
≡

(
E F
F G

)
(1.1)

H(u, v) =
(

rrruu···NNN rrruv···NNN
rrruv···NNN rrrvv···NNN

)
≡

(
h11 h12

h12 h22

)
≡

(
e f
f g

)
(1.2)

that embody the content of the 1st and 2nd fundamental forms. Here

NNN(u, v) = nnn√
nnn···nnn

with nnn = rrru× rrrv (2)

is the unit normal at the point P ∈ Σ with coordinates {u, v}. G(u, v) describes
the local metric structure of Σ, while H(u, v) alludes1 to the local curvature of
Σ. The Gauss and Weingarten equations2 read

rrruu = Γ 1
11rrru + Γ 2

11rrrv + h11NNN

rrruv = Γ 1
12rrru + Γ 2

12rrrv + h12NNN

rrrvv = Γ 1
22rrru + Γ 2

22rrrv + h22NNN





(3.1)

NNNu = fF − eG
D

rrru + eF − fE
D

rrrv ≡ γ11rrru + γ12rrrv

NNNv = gF − fG
D

rrru + fF − gE
D

rrrv ≡ γ21rrru + γ22rrrv





(3.2)

respectively, where D ≡ det G = EG−F 2. That Gauss-Weingarten information

1 Note that (rrrx···NNN)y = 0y = rrrx···NNNy + rrrxy···NNN gives hxy = −rrrx···NNNy, which
vanishes when—as on the flat plane—NNNy = 000.

2 See “Surfaces in 3-Space” (December, 2015), pages 4–5 for the derivations.
Here, as in the preceding descriptions of G and H, I find it sometimes convenient
to employ numerical instead of alphabetic indices; Γ 1

12 means Γ u
uv, etc.
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can be deployed



rrru

rrrv

NNN





u

=




Γ 1

11 Γ 2
11 h11

Γ 1
12 Γ 2

12 h12

γ11 γ12 0








rrru

rrrv

NNN



 ≡ U




rrru

rrrv

NNN








rrru

rrrv

NNN





v

=




Γ 1

12 Γ 2
12 h12

Γ 1
22 Γ 2

22 h22

γ21 γ22 0








rrru

rrrv

NNN



 ≡ V




rrru

rrrv

NNN










(4)

where the Christoffel symbols—which arise from the metric G(u, v), and on
2-dimensional manifolds are six in number—are given by3

Γ 1
11 = D–1

{
1
2g22g11,u − g12g12,u + 1

2g12g22,v

}

Γ 2
11 = D–1

{
− 1

2g12g11,u + g11g12,u − 1
2g11g22,v

}

Γ 1
12 = Γ 1

21 = D–1
{

1
2g22g11,v − 1

2g12g22,u

}

Γ 2
12 = Γ 2

21 = D–1
{
− 1

2g12g11,v + 1
2g11g22,u

}

Γ 1
22 = D–1

{
− 1

2g12g22,v + g22g12,v − 1
2g22g22,u

}

Γ 2
22 = D–1

{
1
2g11g22,v − g12g12,v + 1

2g12g22,u

}






(5)

The Mainardi-Codazzi consistency condition2 can now be formulated



rrru

rrrv

NNN





uv

=




rrru

rrrv

NNN





vu

which by (4) entails Uv + UV = Vu + VU or

W ≡ Uv−Vu + UV−VU = O (6)

All of which is quite general, in the sense that it pertains to arbitrarily
parameterized arbitrary surfaces Σ in 3-space. It was from a specific instance
of (6)—namely: from the asymptotically parameterized pseudosphere—that
Edmond Bour was led (1862 ) to the nonlinear partial differential equation that
physicists—many decades later, and for their own reasons—found it natural to
call the “sine-Gordon equation.” C. Rogers & W. K. Schief, in their recent
review of developments that stem from Bour’s work,4 have drawn attention5 to
the remarkable variety of the forms in which Bour’s argument can be cast. It is
my objective here to provide a comparative review of those, with indication of
the extent to which they may be generalizable, not specific to the pseudosphere.

3 See equations (17.2) on page 12 in the source just cited.
4 Bäcklund and Darboux Transformations: Geometry & Modern Applications

in Soliton Theory (2002).
5 See Chapter 2: “The Motion of Curves and Surfaces. Soliton Connections”

in the work just cited.
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The pseudosphere as tractrix of revolution . The pseudosphere, thus conceived,
acquires the natural parameterization

rrr(u, v) =




sechu cos v
sechu sin v
u − tanhu



 (7)

By quick calculation6

G =
(

tanh2u 0
0 sech2u

)

H =
(
−sechu tanhu 0

0 sechu tanhu

)





(8)

—from which it is immediately evident that the Gaussian curvature

K = det H/det G = −1

—and, by calculation that would be less quick only if done by hand,

U =




cschu sechu 0 −sechu tanhu

0 −tanhu 0
cschu 0 0





V =




0 −tanhu 0

cschu sechu 0 −sechu tanhu
0 −sinhu 0





whence (here the assistance of Mathematica is indispensable)

W = Uv−Vu + UV−VU =




0 0 0
0 0 0
0 0 0





Which is to say: The naturally parameterized pseudosphere leads to Gauss-
Weingarten equations that are manifestly consistent.

The asymptotically parameterized pseudosphere . Let xxx and yyy be tangent vectors
at P ∈ Σ. They are said to be “conjugate” if (xxx, Hyyy) = 0 and xxx is said to be “self-
conjugate” or “asymptotic” if (xxx, Hxxx) = 0. If the curvature of Σ is negative at
P then, by an easy argument, there exists at P a conjugate pair of asymptotic
vectors, and if the curvature of Σ is everywhere negative then through every
point P pass a pair of “asymptotic curves” (curves with asymptotic tangents),
which serve collectively to provide the “asymptotic parameterization” of Σ.
So simple is the (traceless diagonal) structure (1.2) of H(u, v) that we are led

6 I have prepared a package of Mathematica commands to produce all the
computational implications of equations (1–6) that I will have occasion to report.
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almost immediately to this asymptotic parameterization of the pseudosphere:

rrr(x, y) =




sech(x + y) cos(x − y)
sech(x + y) sin(x − y)
(x + y) − tanh(x + y)



 (9)

Direct calculation7 supplies

G(x, y) =
(

1 tanh2(x + y) − sech2(x + y)
tanh2(x + y) − sech2(x + y) 1

)

H(x, y) =
(

0 −2sech(x + y)tanh(x + y)
−2sech(x + y)tanh(x + y) 0

)

From the diagonal of G(x, y) we learn that the asymptotic tangent vectors
rrrx(x, y) and rrry(x, y) are already normalized, and therefore that the off-diagonal
term describes the cosine of the angle

ω(x, y) = arccos
[
tanh2(x + y) − sech2(x + y)

]

= arccos
[
1 − 2sech2(x + y)

]
(10)

with which they intersect. In this notation

G(x, y) =
(

gxx gxy

gyx gyy

)
=

(
1 cos ω(x, y)

cos ω(x, y) 1

)
(11.1)

which gives det G(x, y) = sin2 ω(x, y), from which (by K = −1) we infer that
H(x, y) can be written

H(x, y) =
(

hxx hxy

hyx hyy

)
=

(
0 sin ω(x, y)

sin ω(x, y) 0

)
(11.2)

Working from (11), Mathematica supplies

U(x, y) =




ωx cot ω −ωx csc ω 0

0 0 sin ω
cot ω − csc ω 0





V(x, y) =




0 0 sin ω

−ωy csc ω ωy cot ω 0
− csc ω cot ω 0





7 Alternatively, look to the tensor transformations

G(u, v) −→ G(x, y), H(u, v) −→ H(x, y)

that result from u(x, y) = x+y, v(x, y) = x−y; see “Transformed fundamental
forms” (April 2016), page 4.
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whence

W(x, y) =




− cos ω · [1 − ωxy csc ω] [1 − ωxy csc ω] 0

−[1 − ωxy csc ω] cos ω · [1 − ωxy csc ω] 0
0 0 0





From the Gauss-Weingarten consistency condition W(x, y) = O we therefore
acquire the statement [1 − ωxy csc ω] = 0 or

ωxy = sin ω (12)

Note that the sine-gordon equation (12) has emerged here not as a side-
condition—a constraint imposed to achieve Gauss-Weingarten consistency—but
as a corollary, peculiar to the asymptotic parameterization of the pseudosphere,
of that consistency, which was preordained. And that natural parameterization
led to no such corollary.

That the function (10) is indeed a solution of (12)—as by the preceding
argument it must be—can be verified by direct calculation, which supplies

ωxy = sin ω = 2
√

sech2(x + y) tanh2(x + y)

2×2 formalism. The asymptotic tangent vectors rrrx(x, y) and rrry(x, y) are, as
previously noted, unit vectors, and so (by construction) is the vector normal to
them

NNN(x, y) =
rrrx× rrry

sin ω

We erect at {x, y} an orthonormal triad {AAA,BBB,CCC } by writing

AAA = rrrx, CCC = NNN, BBB = NNN × rrrx

= 1
sin ω

(rrrx× rrry) × rrrx

= 1
sin ω

[(rrrx··· rrrx)rrry − (rrrx··· rrry)rrrx]

= csc ω rrry − cot ω rrrx

Then rrry = cos ω AAA + sin ω BBB gives



rrrx

rrry

NNN



 =




1 0 0

cos ω sin ω 0
0 0 1








AAA
BBB
CCC



 abbreviated ρρρ = Zααα

and the merged Gauss-Weingarten equations

ρρρx = Uρρρ, ρρρy = Vρρρ

become αααx = Z–1(UZ − Zx)ααα, αααy = Z–1(VZ − Zy)ααα
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or
αααx = Ũααα, αααy = Ṽααα (13.1)

where

Ũ =




0 −ωx 0

ωx 0 1
0 −1 0



 , Ṽ =




0 0 sin ω
0 0 − cos ω

− sin ω cos ω 0



 (13.2)

are antisymmetric matrices from which I will henceforth drop the tildes. From
the orthonormality of the vectxors {AAA,BBB,CCC } it follows that the matrix

R =




A1 A2 A3

B1 B2 B3

C1 C2 C3





is a rotation matrix RTR = I, in terms of which (13.1) can be written

Rx = UR, Ry = VR (14)

Whether we work from (13) of from (14), we have again the compatability
condition (6)

W ≡ Uy−Vx + UV−VU = O

in which the old symbols have acquired now new ˜ meanings. By calculation
we recover precisely the W(x, y) that appears on the preceding page. Since
the orthogonalization procedure {rrrx, rrry,NNN } → {AAA,BBB,CCC } has served simply to
reorganize the argument, we are not surprised to have been led back again to
the sine-Gordon equation. The reorganization has, however, served to open
some formal doors.

It follows quite generally from the fact that R is a rotation matrix (element
of O(3)) that Rz = AR, where A is 3×3 antisymmetric. Equations (14) conform
to this fact since, as previously remarked, the matrices (13.2) are antisymmetric.
Generally, we have A = a1L1 + a2L2 + a3L3 where

L1 =




0 0 0
0 0 −1
0 1 0



 , L2 =




0 0 1
0 0 0
−1 0 0



 , L3 =




0 −1 0
1 0 0
0 0 0





have commutation properties ([L1, L2] = L3, etc.) characteristic of O(3) and
familiar from the quantum theory of angular momentum. In the present instance
we have

U = ωxL3 − L1

V = cos ω L1 + sin ω L2

The Pauli matrices

σσ1 =
(

0 1
1 0

)
, σσ2 =

(
0 −i
i 0

)
, σσ3 =

(
1 0
0 −1

)



2×2 formalism 7

satisfy [σσ1, σσ2] = 2iσσ3, etc. so the matrices

ll1 = 1
2iσσ1, ll2 = 1

2iσσ2, ll3 = 1
2iσσ3,

mimic precisely the commutation properties of the L -matrices. So if we had
occasion to require of a 2-comnponent spinor ψ(x, y) that it satisfy equations

ψx = Pψ, ψy = Qψ (15.1)

with
P(x, y) = ωxll3 − ll1 = i

2

(
−ωx 1

1 ωx

)

Q(x, y) = cos ω ll1 + sin ω ll2 = − i
2

(
0 e−iω

eiω 0

)





(15.2)

and that it conform to the condition ψxy = ψyx then we would have once again
an equation of the familiar form

Py − Qx + P Q − QP = O

Working out the expression on the left, we obtain

i
2

(
[sin ω − ωxy] 0

0 −[sin ω − ωxy]

)

from which the sine-Gordon equation follows very neatly.

To recapitulate: The asymptotically parameterized pseudosphere supplied
(9), our point of departure. The orthogonalization step {rrrx, rrry,NNN } → {AAA,BBB,CCC }
was fairly natural (though its inversion {rrrx, rrry,NNN } ← {AAA,BBB,CCC } would appear
not to be: what would motivate one to introduce rrry = cos ωAAA + sin ωBBB ?) and
led us to associate a rotation matrix R(x, y) with each of the points {x, y} of
the pseudosphere. With the appearance of elements of O(3) it became—here as
always—natural to look to the SU(2) representation of the theory, from which
the sine-Gordan equation again emerged, but in which no explicit description
of the function ω(x, y) survived, and from which the pseudospheric surface Σ
had pretty much disappeared from view. One might attempt to recover Σ by
running the argument in reverse, but such an effort would be impeded by the
{rrrx, rrry,NNN } ← {AAA,BBB,CCC } problem noted above.

And what would motivate one—especially one with pseudospheres in mind
—to write equations (15)? Rogers & Scheif apparently wrote out the SU(2)
formalism to establish contact with AKNS theory8. The pseudosphere may
lurk somewhere within the “AKNS hierarchy,” and provide the answer to that
question.

8 M. J. Ablowitz, D. J. Kaup, A. C. Newell & Harvey Segur, “The inverse
scattering transform-Fourier analysis for nonlinear problems,” Studies in Appl.
Math. 53, 249–315 (1974).
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Asymptotic curves as space curves . If we assign a constant value to x then
(9) describes a y -parameterized space curve Cx, inscribed on the pseudosphere
Σ. Alternatively, assign a constant value to y and obtain an x-parameterized
space curve Cy. From the diagonal elements of G(x, y) we see that y and x serve
actually to achieve arc-length parameterization of Cx and Cy, respectively. We
bring to those asymptotic pseudospheric curves the apparatus standard to the
theory of arc-length parameterized space curves C, as devised by Jean Frédéric
Frenet (1816–1900) and Joseph Alfred Serret (1819–1885). I begin with brief
review of the apparatus in question.

Let the 3-vector XXX(s) describe, relative to a Cartesian frame, such a space
curve C. Then

TTT (s) = d
dsXXX(s) (16.1)

is the unit vector tangent to C at s. Differentiation of TTT (s)···TTT (s) = 1 establishes
that d

dsTTT (s)⊥ TTT (s) and leads one to write

d
dsTTT (s) ≡ κ(s)UUU(s) (16.2)

where the unit vector UUU(s), directed to the center of curvature, describes the
direction, and κ(s) the magnitude, of the local curvature of C. Assume κ(s) (= 0
and define the “binormal” unit vector

VVV (s) ≡ TTT (s) ×UUU(s) (16.3)

which serves to complete the construction of an orthonormal triad at each
regular point s of C. Elementary arguments9 lead to the conclusion that

d
dsUUU(s) = −κ(s)TTT (s) + τ(s)VVV (s) and d

dsVVV (s) = −τ(s)UUU(s) (16.4)

where τ(s) is the torsion of C at s. Briefly,

ξξξs(s) ≡




TTT
UUU
VVV





s

=




0 κ 0
−κ 0 τ
0 −τ 0








TTT
UUU
VVV



 ≡ S(s) ξξξ(s) (17)

which are the famous “Frenet-Serret formulæ” (1847–1851). The antisymmetric
matrix S(s) is the generator of the infinitesimal rotation that produces the
orthonormal frame at s + ds from the frame at s. It is the upshot of the
“Fundamental Theorem of Space Curves” that—given initial data—one can by
integrating (17) reproduce the entire curve C from the prescribed local data
written into κ(s) and τ(s). Ideas developed in the preceding section are, of
course, immediately applicable; they could be used to reformulate (17) in a way
that makes explicit the relevance of O(3) and SU(2) to the differential geometry
of space curves.

Look in this light to the curve Cy inscribed on the pseudosphere Σ,

9 See, for example, “A Mathematical Note: Frenet-Serret formulæ in higher
dimension” (August 1998), page 2. Or any relevant textbook.
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which by notational adjustment of (9) we describe10

YYY (s, y) =




sech(s + y) cos(s − y)
sech(s + y) sin(s − y)
(s + y) − tanh(s + y)



 (18)

Bringing (18) to (16), we calculate

κ(y, s) = 2sech(y + s) : curvature of Cy at s (19.1)

and
τ(y, s) = −1 : torsion of Cy at s (19.2)

so the curves Cy are curves of variable curvature but constant torsion, and (17)
becomes




TTT
UUU
VVV





s

=




0 2sech(y + s) 0

−2sech(y + s) 0 −1
0 1 0








TTT
UUU
VVV





The same can be said of the curves Cx, except that for such curves the sign of
the torsion is reversed.

From temporally twisted curves to the sine-Gordon equation . For any curve C
we have (17), which describes the differential geometry of the curve. Rogers &
Schief (their §2.2) enrich the subject by looking to what they find it
convenient to think of as the motion of curves—not of curves in general but
of the curves Cy. The simplest such motion is the rigid motion that arises
from writing y = y0 + c t; the curve Cy0

then translates temporally through the
entire population of asymptotic Cy-curves, tracing out the pseudospheric surface
Σ. But this temporal process supplies no information about the Cx-curves,
therefore none about the angle ω(x, y) of their intersection with Cy-curves,
therefore cannot lead by the familiar route to the sine-Gordon equation. Rogers
& Schief look instead to the class of motions that result when the
orthonormal Frenet-Serret triads {TTT ,UUU,VVV }y associated with Cy are subjected

10 Similarly, to describe Cx we would write

XXX(x, s) =




sech(x + s) cos(x − s)
sech(x + s) sin(x − s)
(x + s) − tanh(x + s)





I digress to note that there are now associated with every point P on Cy

two orthonormal triads, one with elements {TTT ,UUU,VVV }y that refer to the local
geometry of Cy and another with elements {AAA,BBB,CCC }P that refer to the local
geometry of Σ. The vectors TTT and AAA both refer to the unit tangent originally
denoted rrrx(x, y). The vectors UUU,VVV , BBB and CCC all lie in the plane normal to the
tangent, but UUU (normal to Cy) and CCC (normal to Σ) are generally distinct, and
so also therefore are VVV and BBB. Yet a third orthonormal frame {TTT ,UUU,VVV }x refers
to the local geometry of the Cx that passes through P .
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to local orthonormality-preserving rotations. I will describe sequentially

• The “local twisting transformation” as it relates to curves in general.

• The natural emergence of the sine-Gordon equation in cases where local
twisting has been designed to preserve a prescribed constancy of the torsion.

• Circumstance which give rise to solutions of the sine-Gordon equation.

Let C be any one of the (congruent) curves that arise from the prescribed
curvature and torsion functions, κ(s) and τ(s). We have then the Frenet-Serret
formulae (17), which we write

ξξξs(s, t) = S(s, t)ξξξ(s, t) with S(s, t) =




0 κ(s, t) 0

−κ(s, t) 0 τ(s, t)
0 −τ(s, t) 0





in anticipation of our intention to (in a manner of speaking) “launch C into
twisting motion.” Which we do by writing

ξξξ t(s, t) = T(s, t) ξξξ(s, t) with T(s, t) =




0 c(s, t) b(s, t)

−c(s, t) 0 a(s, t)
−b(s, t) −a(s, t) 0





where the antisymmetric matrix T(s, t) generates at s an infinitesimal rotational
“twist” ξξξ(s, t) → ξξξ(s, t + dt) about the axis11

λλλ(s, t) =




a
−b
c





We impose now the stipulation that operations of s-translation and t-translation
commute12

ξξξst = ξξξts (20.1)

which can be formulated

C = S t − Ts + ST − TS = O (20.2)

The matrix C(s, t) is antisymmetric, so C = O produces three equations that
by calculation are found to read

as = −κb + τt

bs = κa − τc

cs = τb + κt





(21)

and to entail
(a2 + b2 + c2)s = 2(cκt + aτt) (22)

11 Here the minus sign is a contrivance introduced to make things work out
most simply.

12 This Rogers & Schief—for reasons that I do not quite understand—refer
to as imposition of an inextensibility requirement.
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So much for the general theory of temporally twisted curves. We look now
to the special circumstances that lead to the sine-Gordon equation. Stipulate

τt = c = 0

and (22) becomes13
(a2 + b2)s = 0

This we achieve (another contrivance) by setting

a(s, t) = f(t) cos σ(s, t)
b(s, t) = f(t) sin σ(s, t)

The commutivity conditions (21) have become

−f(t)σs sin σ = −κf(t) sin σ

f(t)σs cos σ = κf(t) cos σ

0 = τf(t) sin σ(s, t) + κt

of which the first pair give
κ = σs (23)

which by the last of those conditions (set f(t) = 1 and assign to τ its Cy

pseudospheric value τ = −1) gives the sine-Gordon equation

σst = sin σ (24)

We have been led to set

S(s, t) =




0 σs 0

−σs 0 −1
0 1 0



 , T(s, t) =




0 0 sin σ
0 0 cos σ

− sin σ − cos σ 0





in terms of which the compatability condition (20.2) reads

C =




0 [σst − sin σ] 0

−[σst − sin σ] 0 0
0 0 0



 = O (25)

We have here an efficient summary of the “twisted curve with constant torsion”
argument that led to the sine-Gordon equation (24). If we assign to the torsion
its Cx pseudospheric value τ = +1 and at the same time reverse the sense of
the twist (i.e., replace T by its transpose) we again recover (25).

13 One might alternatively set κt = a = 0 and obtain (b2 + c2)s = 0. It is—
see again (19)—a property of the pseudospheric asymptotic curves Cx and Cy

that has led me to dismiss that option, which is considered in Rogers & Schief’s
§2.1.2.



12 From the pseudosphere to the sine-Gordon equation

But production of the sine-Gordon equation as a “natural object” is quite
a different thing from production of a solution of the sine-Gordon equation.
In this connection the pseudosphere can be brought again into play. At (19)
we have a discription of the Cy that gives τ = −1 and κ(s, t) = 2 sech(s + t).
Integration of σs = κ gives

σ(s, t) = 4arctan
[
tanh

(
s + t

2

)]
+ π

where the additive constant of integration has been fixed by the requirement
that σ(s, t) be in fact a solution of the sine-Gordon equation:

σst = sin σ = 2sech(s + t)tanh(s + t)

It is, however, distinct from the solution encountered earlier, which (after
obvious notational adjustment of (10)) can be written

ω(s, t) = arccos
[
1 − 2sech2(s + t)

]

and was observed on page 5 to give

ωst = sin ω = 2
√

sech2(s + t) tanh2(s + t)

The two functions are, however, very closely related: graphic experimentation
leads to the realization that14

ω(s, t) =
{

σ(s, t) : s + t < 0
2π − σ(s, t) : s + t > 0

The function σ(s, t) is even more closely related to the a-parameterized class
of functions15

ω(s, t; a) = 4arctan
(
eas+t/a

)

that result from Bäcklund transformation of the trivial sine-Gordon function 0.
Setting a = 1 to obtain

Ω(s, t) = 4arctan
(
es+t

)

we discover graphically (and confirm alytically) that16

Ω(s, t) = σ(s, t) =
{

ω(s, t) : s + t < 0
2π − ω(s, t) : s + t > 0

The literature17 describes methods for constructing curves with constant
torsion, but one cannot expect the curvature of those curves to lead via κ = σs

14 Note in this regard that ω )→ −ω and ω )→ ω mod 2π both send solutions
to solutions of the sine-Gordon equation.

15 See “Rectilinear congruences” (February 2016), page 14.
16 See“Some remarks concerning the sine-Gordon equation”(November 2015),

page 14.
17 See Luther Eisenhart, A Treatise on the Differential Geometry of Curves

and Survaces (1909), Exercise 9, page 50; Larry M. Bates & O. Michael Melko,
“On curves of constant torsion,” arXiv [Math.DG] (29 June 2012).
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to functions σ(s, t) that satisfy the sine-Gordon equation. Those curves, as
illustrated, have no relation to the pseudosphere. The literature provides also
methods for constructing curves with constant curvature and variable torsion,18
and to them similar remarks pertain.

On the other hand, given any solution σ(s, t) of the sine-Gordon equation
one could construct κ = σs and (setting τ = ±1) integrate the Frenet-Serret
equations to obtain what might be called a “sine-Gordon curve.” It would be
of interest to know what such curves look like in illustrative cases. The theory
of such curves and their interrelationships would presumably be distinct from
the theory of “sine-Gordon surfaces” (transformed pseudospheres), and might
prove to be of independent interest.

18 See, for example, J. Monterde, “Salkowski curves revisited: A family of
curves with constant curvature and non-constant torsion,” (2008), available on
the web. In an appendix the author discusses also “A family of curves with
constant torsion and non-constant curvature.” E. Salkowski was a differential
geometer active during the first decades of the 19th Century, who published on
this subject in 1909, and later pioneered development of the affine differential
geometry of hypersurfaces.


